Шедевр советской инженерии - компьютер на воде.

Разговаривают два генерала, наш и американский.
Наш генерал:
— Российский солдат имеет трехразовое питание, и в результате получает 2.000 Ккал в день.
Американский генерал:
— А наш солдат получает 4.000 Ккал в день!
Наш генерал:
— Врешь, НАТОвская морда, не может солдат съесть два мешка брюквы!

Ну вообще то и не обязательно на воде. Аналоговый компьютер можно сделать на любой среде, позволяющей моделировать расчитываемый процесс. Кстати, те-же пневматические аналоговые компьютеры до сих пор используются, к примеру в ракетостроении. И вообще нас окружает великое множество аналоговых компьютеров, решающих сложнейшие системы уравнений, которые современная молодежь просто не воспринимает как компьютеры.... ...И если современному инженеру поставить задачу, аналогичную той, которую инженеры прошлого решали "при помощи трех шестеренок и веревки", то его "конечное изделие" будет обвешано кучей микропроцессорной электроники...

Полагаю, что, в том числе и по этой причине, следующее поколение Российского вооружения не будет таким дешевым как используемое сейчас Советское...

Сохранил же этот материал я исключительно в качестве одного из аргументов для любителей рассказать, что "для решения некоей задачи не хватит мощности всех компьютеров Земли на много столетий вперед".... Для меня подобное утверждение относится к разряду "...не может солдат съесть два мешка брюквы...".

Да, действительно, для моделирования великого множества процессов, мощности существующих цифровых компьютеров явно не достаточно и возможно в ближайшие столетия будет не достаточно, но кто сказал, что цифровой компьютер - это единственный способ получения требуемого конечного результата? В конце концов важен не сам процесс вычислений, а получение некоего конечного результата, для получения которого вовсе не обязательно что-то вычислять в "классическом понимании".

Много вы вычисляете, когда, к примеру, играете в снежки? Или когда ловите брошенный вам мяч? Или даже когда просто садитесь на стул? Почему же тогда наши роботы, чтобы поймать тот-же мячик что-то вычисляют? Уж не потому ли, что мы продолжаем "кормить наших солдат брюквой", забывая, что помимо брюквы есть и более калорийная еда?



Буквально только сейчас узнал о совершенно потрясающем устройстве – водяном компьютере. Гидравлический интегратор Лукьянова - первая в мире вычислительная машина для решения дифференциальных уравнений в частных производных - на протяжении полувека был единственным средством вычислений, связанных с широким кругом задач математической физики.

В 1936 году он создал вычислительную машину, все математические операции в которой выполняла текущая вода. Слышали ли вы о таком?

Первый гидроинтегратор ИГ-1 был предназначен для решения наиболее простых – одномерных задач. В 1941 году сконструирован двухмерный гидравлический интегратор в виде отдельных секций. В последствии интегратор был модифицирован для решения трехмерных задач.

После организации серийного производства интеграторы стали экспортироваться за границу: в Чехословакию, Польшу, Болгарию и Китай. Но самое большое распространение они получили в нашей стране. С их помощью провели научные исследования в поселке "Мирный", расчеты проекта Каракумского канала и Байкало-Амурской магистрали. Гидроинтеграторы успешно использовались в шахтостроении, геологии, строительной теплофизике, металлургии, ракетостроении и во многих других областях.

Появившиеся в начале 50-х годов первые цифровые электронно-вычислительные машины (ЦЭВМ) не могли составить конкуренции "водяной" машине. Основные преимущества гидроинтегратора - наглядность процесса расчета, простота конструкции и программирования. ЭВМ первого и второго поколений были дороги, имели невысокую производительность, малый объем памяти, ограниченный набор периферийного оборудования, слабо развитое программное обеспечение, требовали квалифицированного обслуживания. В частности, задачи мерзлотоведения легко и быстро решались на гидроинтеграторе, а на ЭВМ - с большими сложностями. В середине 1970-х годов гидравлические интеграторы применялись в 115 производственных, научных и учебных организациях, расположенных в 40 городах нашей страны. Только в начале 80-х годов появились малогабаритные, дешевые, с большим быстродействием и объемом памяти цифровые ЭВМ, полностью перекрывающие возможности гидроинтегратора.

И еще немного для тех, кому интересны подробности.

Создание гидроинтегратора продиктовано сложной инженерной задачей, с которой молодой специалист В. Лукьянов столкнулся в первый же год работы.

После окончания Московского института инженеров путей сообщения (МИИТ) Лукьянов был направлен на постройку железных дорог Троицк-Орск и Карталы-Магнитная (ныне Магнитогорск).

В 20-30-е годы строительство железных дорог велось медленно. Основными рабочими инструментами были лопата, кирка и тачка, а земляные работы и бетонирование производились только летом. Но качество работ все равно оставалось невысоким, появлялись трещины - бич железобетонных конструкций.

Лукьянов заинтересовался причинами образования трещин в бетоне. Его предположение об их температурном происхождении сталкивается со скептическим отношением специалистов. Молодой инженер начинает исследования температурных режимов в бетонных кладках в зависимости от состава бетона, используемого цемента, технологии проведения работ и внешних условий. Распределение тепловых потоков описывается сложными соотношениями между температурой и меняющимися со временем свойствами бетона. Эти соотношения выражаются так называемыми уравнениями в частных производных. Однако существовавшие в то время (1928 год) методы расчетов не смогли дать быстрого и точного их решения.

В поисках путей решения проблемы Лукьянов обращается к трудам математиков и инженеров. Верное направление он находит в трудах выдающихся российских ученых - академиков А. Н. Крылова, Н. Н. Павловского и М. В. Кирпичева.

Инженер-кораблестроитель, механик, физик и математик академик Алексей Николаевич Крылов (1863-1945) в конце 1910 года построил уникальную механическую аналоговую вычислительную машину - дифференциальный интегратор для решения обыкновенных дифференциальных уравнений 4-го порядка.

Академик Николай Николаевич Павловский (1884-1937) занимался вопросами гидравлики. В 1918 году доказал возможность замены одного физического процесса другим, если они описываются одним и тем же уравнением (принцип аналогии при моделировании).

Академик Михаил Викторович Кирпичев (1879-1955) - специалист в области теплотехники, разработал теорию моделирования процессов в промышленных установках - метод локального теплового моделирования. Метод позволял в лабораторных условиях воспроизводить явления, наблюдаемые на больших промышленных объектах.

Лукьянов сумел обобщить идеи великих ученых: модель - вот высшая степень наглядности математической истины. Проведя исследования и убедившись, что законы течения воды и распространения тепла во многом сходны, он сделал вывод - вода может выступать в роли модели теплового процесса. В 1934 году Лукьянов предложил принципиально новый способ механизации расчетов неустановившихся процессов - метод гидравлических аналогий и спустя год создал тепловую гидромодель для демонстрации метода. Это примитивное устройство, сделанное из кровельного железа, жести и стеклянных трубок, успешно разрешило задачу исследования температурных режимов бетона.

Главным его узлом стали вертикальные основные сосуды определенной емкости, соединенные между собой трубками с изменяемыми гидравлическими сопротивлениями и подключенные к подвижным сосудам. Поднимая и опуская их, меняли напор воды в основных сосудах. Пуск или остановка процесса расчета производились кранами с общим управлением.

В 1936 году заработала первая в мире вычислительная машина для решения уравнений в частных производных - гидравлический интегратор Лукьянова.

Для решения задачи на гидроинтеграторе необходимо было:

1) составить расчетную схему исследуемого процесса;

2) на основании этой схемы произвести соединение сосудов, определить и подобрать величины гидравлических сопротивлений трубок;

3) рассчитать начальные значения искомой величины;

4) начертить график изменения внешних условий моделируемого процесса.

После этого задавали начальные значения: основные и подвижные сосуды при закрытых кранах наполняли водой до рассчитанных уровней и отмечали их на миллиметровой бумаге, прикрепленной за пьезометрами (измерительными трубками) - получалась своеобразная кривая. Затем все краны одновременно открывали, и исследователь менял высоту подвижных сосудов в соответствии с графиком изменения внешних условий моделируемого процесса. При этом напор воды в основных сосудах менялся по тому же закону, что и температура. Уровни жидкости в пьезометрах менялись, в нужные моменты времени краны закрывали, останавливая процесс, и на миллиметровой бумаге отмечали новые положения уровней. По этим отметкам строили график, который и был решением задачи.



Возможности гидроинтегратора оказались необычайно широки и перспективны. В 1938 году В. С. Лукьяновым была основана лаборатория гидравлических аналогий, которая вскоре превратилась в базовую организацию для внедрения метода в народное хозяйство страны. Руководителем этой лаборатории он оставался в течение сорока лет.

Главным условием широкого распространения метода гидравлической аналогии стало совершенствование гидроинтегратора. Создание конструкции, удобной в практическом применении, позволило решать задачи различных типов - одномерные, двухмерные и трехмерные. Например, течение воды в прямолинейных границах - одномерный поток. Двумерное движение наблюдается в районах крупных излучин рек, вблизи островов и полуостровов, а грунтовые воды растекаются в трех измерениях.

Первый гидроинтегратор ИГ-1 был предназначен для решения наиболее простых - одномерных - задач. В 1941 году сконструирован двухмерный гидравлический интегратор в виде отдельных секций.

В 1949 году постановлением Совета Министров СССР в Москве создан специальный институт "НИИСЧЕТМАШ", которому были получены отбор и подготовка к серийному производству новых образцов вычислительной техники. Одной из первых таких машин стал гидроинтегратор. За шесть лет в институте разработана новая его конструкция из стандартных унифицированных блоков, и на Рязанском заводе счетно-аналитических машин начался их серийный выпуск с заводской маркой ИГЛ (интегратор гидравлический системы Лукьянова). Ранее единичные гидравлические интеграторы строились на Московском заводе счетно-аналитических машин (САМ). В процессе производства секции были модифицированы для решения трехмерных задач.

В 1951 году за создание семейства гидроинтеграторов В. С. Лукьянову присуждена Государственная премия.

После организации серийного производства интеграторы стали экспортироваться за границу: в Чехословакию, Польшу, Болгарию и Китай. Но самое большое распространение они получили в нашей стране. С их помощью провели научные исследования в поселке "Мирный", расчеты проекта Каракумского канала и Байкало-Амурской магистрали. Гидроинтеграторы успешно использовались в шахтостроении, геологии, строительной теплофизике, металлургии, ракетостроении и во многих других областях.

Особенно наглядно проявилась эффективность метода гидравлических аналогий при изготовлении железобетонных блоков первой в мире гидроэлектростанции из сборного железобетона - Саратовской ГЭС им. Ленинского комсомола (1956-1970). Требовалось разработать технологию изготовления около трех тысяч огромных блоков весом до 200 тонн. Блоки должны были быстро вызревать без трещин на поточной линии во все времена года и сразу устанавливаться на место. Очень сложные расчеты температурного режима с учетом непрерывного изменения свойств твердеющего бетона и условий электропрогрева произвели своевременно и в нужном объеме только благодаря гидроинтеграторам Лукьянова. Теоретические расчеты в сочетании с испытаниями на опытном полигоне и на производстве позволили отработать технологию изготовления блоков безукоризненного качества.

Появившиеся в начале 50-х годов первые цифровые электронно-вычислительные машины (ЦЭВМ) не могли составить конкуренции "водяной" машине. Основные преимущества гидроинтегратора - наглядность процесса расчета, простота конструкции и программирования. ЭВМ первого и второго поколений были дороги, имели невысокую производительность, малый объем памяти, ограниченный набор периферийного оборудования, слабо развитое программное обеспечение, требовали квалифицированного обслуживания. В частности, задачи мерзлотоведения легко и быстро решались на гидроинтеграторе, а на ЭВМ - с большими сложностями. Более того, предварительное применение метода гидравлических аналогий помогало поставить задачу, подсказать путь программирования ЭВМ и даже проконтролировать ее во избежание грубых ошибок. В середине 1970-х годов гидравлические интеграторы применялись в 115 производственных, научных и учебных организациях, расположенных в 40 городах нашей страны. Только в начале 80-х годов появились малогабаритные, дешевые, с большим быстродействием и объемом памяти цифровые ЭВМ, полностью перекрывающие возможности гидроинтегратора.

Два гидроинтегратора Лукьянова представлены в коллекции аналоговых машин Политехнического музея в Москве. Это редкие экспонаты, имеющие большую историческую ценность, памятники науки и техники. Оригинальные вычислительные устройства вызывают неизменный интерес посетителей и входят в число самых ценных экспонатов отдела вычислительной техники.



Источники:

Я еще хотел бы вам напомнить про Секретного предка компьютеров, а так же что это за "Сетунь" - единственный серийный троичный компьютер из СССР ну и вспомним немного про Советские корни процессора Intel Pentium. Вот кстати, еще "Минск" против IBM, а так же Неформальная история разработки ПК “Истра-4816”

05.12.2017

К о м м е н т а р и и

14309: 09.12.2017 12:04
YAROSLAV
Прочитал статью и сразу появилась ассоциация отсюда МАРЧЕЛЛО АРДЖИЛЛИ - ДЕСЯТЬ ГОРОДОВ, Машиноградос. Впрочем и остальные тоже интересны для других тем.
45096: 30.06.2018 09:32
евгений 12449
Хотел скопировать статью себе - не получается . А раньше ж разрешали ?
45100: 01.07.2018 23:25
KSV
Хотел скопировать статью себе - не получается . А раньше ж разрешали ?На № 45096: :о) Ну вообще-то эта зашита спасает только от совсем тупых "копипастеров" - она легко обходится. Кроме того, во всех статьях есть ссылка на первоисточник, откуда тоже можно легко все скопировать.
Фильтр по псевдониму:Пока работает откровенно не корректно (К примеру после применения фильтра надо вручную заново выбрать страницу сообщений иначе не подействует :о), особенно в Opera. Должен отображать сообщения только от пользователей, перечисленных через запятую в строке ввода, или, если список пользователей предваряется знаком "-", наоборот не отображает сообщения от пользователей из этого списка. Например: nick1,nick2,nick3 отобразит сообщения только от пользователей с псевдонимами nick1,nick2,nick3, а -nick1,nick2,nick3 отобразит все сообщения, за исключением сообщений от пользователей с псевдонимами nick1,nick2,nick3.
Имя:
7000
e-mail: